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i. Statement of the Problem 

Recently considerable progress has been achieved in the investigation of flows of a 
rarefied monatomic gas analytically and by numerical methods [i, 2]. Ever closer attention 
is being attracted by problems in which, first, one cannot be confined to a simple gas alone, 
and second, during a particle collision energy exchange is possible between translational 
and internal degrees of freedomp such as the excitation of vibrational, rotational, and 
electronic levels of molecules, the occurrence of ionization, dissociation, and recombina- 
tion reactions, etc. Some problems of the theory of a chemically reactive gas mixture 
either under close to equilibrium conditions or in strongly nonequilibrium states in the 
presence of a small parameter are considered in [3]. There are also attempts at the numer- 
ical solution of such problems [4-7]. 

A numerical method of statistical modeling of collisions was suggested in [8, 9] to 
solve problems of the kinetics of a multicomponent gas mixture in a homogeneous space. In 
the present report this method is extended to gas mixtures in which energy exchange occurs 
between translational and internal degrees of freedom of the particles [i0]. The method 
being developed is built on the basis of a model of a monatomic gas with elastic collisions 
[ii, 12], whose asymptotic equivalence to the Boltzmann equation was established in [13]. 

A nonsteady statistical model of a gas mixture is constructed using the basic concepts 
of [i0, ii] and an algorithm modeling collisional relaxation. 

2. Construction of the Model 

Let the gas mixture consist of M components. We designate each component by the index 
al, where l = i, 2, ..., M, and the mass of a particle of the al-th component as ml, while 
the velocity is v I. 

We isolate some volume V in physical space inwhich we replace the gas mixture by a system of 

M 

N = N I ~- ... -~ NM .~ Nz model particles with velocities v~, . v~1; ..;v~ ~, .. M ---- .., �9 .,vN~x �9 Here 

N1 is the number of particles of component a 1. The state of the system of model particles 
as a whole will be characterized by the vector 

x = . . . .  . . . . .  . . . . .  . . . . .  

We introduce the statistical model of the gas mixture with the help of two definitions, 
the first of which establishes the concept of the collision of model particles while the 
second defines the time interval separating collisions [12, i0]. 

The first definition is based on the laws of conservation of particle number, energy, 
and momentum for a given interaction potential, the use of which permits a calculation of 
the velocity following the collision. Through the second definition the physical properties 
of the model particles assign the probability characteristics describing the model, on the 
basis of which one obtains an exponential distribution of the waiting time for the next 
collision of any pair of N particles, 
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o~"(x) = P {A t*  ~< x} --~:i1 - -  exp( - -Zx) ,  

where the interval �9 does not depend on the choice of the origin of the time frame; % = 

ij, collision frequency; mij = gijaij(gij )/v, probability of the collision of a 

pair of particles; gij = Ivi -- yjl; oij(glj), collision cross section; At*, waiting time~ 
Consequently, the probability that the palr of particles (i, j) collided at the time t, with 
the condition that a collision of one of the pair occurred at this time, is Wij = mij/%. 

In modeling the change in internal energy of the particles in the collision it is con- 
yenient to choose the mass ml, the velocity vl, and the internal energy E l = El(A/) of the 
particles as the main parameters, where A1 is the set of quantum numbers defining the par- 
ticles of the given component (type). The transition of a particle from type to type occurs 
with observation of the laws of conservation of total energy and momentum of the colliding 
particles. 

Consequently, the following relations are satisfied for the velocity G of the center 
of inertia and the relative velocity g of the colliding particles before and after the 
collision in each collision: 

G l ~  = Gz'~,*, g t 'n"  m t ,  ~ . ( 2 . 1 )  
l'nlt~Z" ] ) 

= m/mn/(mz+ m n) and ml, n, = ml,mm'/(m l' + an,) are the reduced masses; AE~n n' = where m/n 

E l ' + E n, -- E l -- E n is the change in internal energy in the process under considerationl the 
prime refers to quantities after the collision. The latter parameter determines the type of 

~'n' 
AE/'n ' collision: AE/n = 0, 11 = l, n' = n is an elastic collision of the particles! In = 

0.1' #<~, n' # n is a resonance inelastic collision~ which is characterized by conservation 
of the energy of internal degrees of freedom and of the energy of translational degrees of 
freedom separately~ AE~ln' > 0 is a nonresonance inelastic collision, in which there is a 

conversion of a certain fraction of the kinetic energy of the colliding particles into in- 
ternal energy of the particles| AE$ 'n' < 0 is a nonresonance inelastic collision in which 

n 
there is a conversion of part of t~e internal energy of the particles into kinetic energy 
(if one of the particles does not possess an internal energy, an electron, e.g., then this 
will be a case of a so-called superelastic collision). 

As a result of collision, the number of model particles for each component will be 
variable, but the total number of particles is conserved owing to the paring of the colli- 
sions. The total collisional cross section for model particles of types a I and a n can be 
assigned in the form (2.2) 

(~l'n' 
O'~n(g zn) = O ln(gtn)-~ - ]~ ~n (gZn), ( 2 . 2 )  l,n t 

l ) n  ! 
where ~In is the cross section for an elastic interaction, aln is the cross section of the 
interaction for the process a I + a n § a l' + a~ 

W.. for this pro- Equation (2.2) is used to calculate theprobability characteristics in 
tess, so that 13 

In e r ln'~ i 

= (',J) + (2.3) 

w h e r e  t h e  q u a n t i t y  (/d~?) e i s  t h e  p r o b a b i l i t y  o f  an  e l a s t i c  c o l l i s i o n ~  (0J,.b'?) i i s  t h e  
1_ .7_ 

p r o b -  
a.3 13  

ability of an inelastic collision of the particles. Thus, the waiting times for the next 
collision are calculated through the collision frequency using Eqs. (2.2) and (2.3), which 
contain information about the inelastic processes. 
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The numerical algorithm corresponding to the given statistical model of a gas mixture 
with physicochemical processes is based on the statements presented above and allows for the 
changes in the internal energy of the particles and the changes in the types of particles 
during collisions. The realization of the algorithm consists of a numerical solution by the 
Monte Carlo analog method by the finite-difference scheme of the Kolmogorov equation 
~(X~ t)/~t = K~(X, t) for the probability distribution ~(X, t) of the state X(t) of the 
system of particles. In this case the macroscopic characteristics of the components of the mix- 
ture at an arbitrary time t can be calculated as the mathematical expectations of the corre- 
sponding average quantities [i0]. 

3. System of Determining Parameters 

In the numerical experiments the physical quantities characterizing the state of the 
mixture are represented in dimensionless form with the following determining parameters: 
mass m, density n, temperature T, and some effective length a, depending on the interaction 
potential. The quantities % ~i/~nd 2 and ~ ~/m, the mean free path and the mean veloc- 
ity, connect the parameters determining the physical experiment with the characteristics of 
the mathematical model~ with the statistical volume constant Vo ~ % 3, the time scale T= 
%/7, and the number N ~n of model particles. The determining parameters of one of the com- 
ponents (with the arbitrary number I = i) are chosen as the base quantities in the calcula- 
tions, and the normalization is carried outwith respect to these quantities and their com- 
binations. 

The choice~ of the time step At in the algorithm is limited, on the one hand, by the 
condition ~$~At < i and At << i, in which the total number S of collisions in the system of 

model particles is determined by the Poisson distribution, and, on the other hand, by the 
condition of accuracy of construction of the algorithm for the Markov chain being realized, 
corresponding to the process X(t). 

As follows from [i0, 12], the nonsteady statistical model approximates the Boltzmann 
equation with the accuracy of the quantity O(I/N), which is a result of the replacement of 
the actual medium by a finite number of model particles, while the finite-difference scheme 
to which the algorithm is reduced is conditionally stable and provides an approximation 
accuracy of O(At) [Ii]. The preliminary estimate of the error O(i/N + At) is dependent on 
the choice of the total number of particles in the experiment and the time step At of the 
algorithm. 

4. Relaxation with Respect to Translational Degrees of Freedom 

In solving the problem of the relaxation of translational degrees of freedom at a 
given initial temperature nonuniformity it is assumed that the internal degrees of freedom 
of the particles are in equilibrium. 

A mixture consisting of three gases (M = 3) was investigated. The number of model 
particles of each of the components is chosen as proportional to the initial densities. 

The initial values of the velocities of each of the model particles were assigned in 
accordance with an initial distribution function assumed to be Maxwellian with the corre- 
sponding temperature. 

The following problems were examined~ The relaxation of two components of a gas mix- 
ture in a thermostatic medium formed by the third component, the relaxation of a mixture of 
gases with the same physical properties (one gas with an assigned initial temperature non- 
uniformity, with a determination of the relaxation time and an estimate of the accuracy of 
the results); an investigation of the dependence of the relaxation times of the gas mixture 
on the parameters of the model; the volume V and the number N of particles; an analysis of 
the evolution of the velocity distribution function of the initial state of each component 
of the mixture in the process of collisional relaxation; a comparison between the results ob- 
tained using the statistical model and the results of calculations of the relaxation of a 
mixture of two gases by other finite-difference and statistical methods. 
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In the solution of the first of the enumerated problems the velocity distribution func- 
tion of the particles of one of the components, the so-called thermostatic medium, is kept 
constant, and the temperatures of the relaxing components of the mixture must approach it. 

The results of the numerical experiment for the case of T~ < T~, T~, Tz = T~ = const 
(N = 30, At = 0.i) are presented in Fig. 1 (dashed lines)| the temperatures of the compo- 
nents, which are compared with the temperature T E of the mixture, calculated from the values 
of T~, T2, and T3, are also presented here, while the values of TI, T2, and T3 smoothed by 
the method of least squares are denoted by smooth lines with dots. 

The accuracy of the calculation can be increased through an increase in the number of 
particles taking part in the numerical experiment and a decrease in the time step in the 
algorithm, but to conserve the initial physical characteristics of the gas it is necessary 
to conserve the value of the parameter N/V as one of the similarity parameters. 

To estimate the accuracy, the numerical experiments were carried out with the following 
parameters of the numerical model: TI:T2:Ts = i:0.01:0.001, n~ = n2 = n3 = 1.0; m, = m2 = 
m~ = i, d, = d2 = d3 = i; and 

a) At = 0.2, V = 5Vo, N l = 5, I = i, 2, 3; 
b) At = 0.i, V = 10Vo, N~ = i0, I = 1,2,3 

with a number L of independent realizations equal to three. 

The data obtained confirm the preliminary estimates of the accuracy of the statistical 
model. Thus, in the calculations for variant "a" the temperatures of the components are de- 
termined with a deviation ~E of up to 20% from the mean value T E of the temperature of the 
mixture, whereas the preliminary upper estimate of the accuracy gives 26%. For case "b" the 
macroscopic parameters are determined with an accuracy of up to 10% (preliminary estimate 

13%). 

In analyzing the value of the dispersion D E of the macroscopic parameters with respect 
to the number of realizations, one can draw the conclusion that its value is insignificant 
even for a small number (L = 3) of realizations of the numerical experiment and the value of 
the dispersion does not grow with time, while slight fluctuations are observed within the 
limits of accuracy of the determination of the values. 
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In Fig. 2 we show the time variation of tne temperatures of the components of the mix- 
ture and the evolution of the velocity distribution functions of the particles of each of 
the components, which have a mass ratio of I:i0:i00 and a ratio of particle diameters of 
1:2:3, while the remaining parameters coincide with case "b." Here it is shown how the 
analysis of the distribution functions of the components in the process of relaxation pro- 
vides additional information about the course of the process. 

The relaxation of the cold component CH~ towardthe equilibrium temperature in a mix- 
ture of methane and argon is reflected in Fig. 3. 

At the initial time it was assumed that the concentrations of the Ar and CH4 components 
were the same (~i0 ~8 cm-3), while the temperatures had the values TAr = 104~ and TCH ~ = 
3.102~ The modeling was carried out with the following values of the parameters~ T,:T~ = 
1:0.03, N~ = N= = i0, V = 20Vo, At = 0.i. Here we also present the results of [14] (dashed 
line) and [6] (dash--dot line), carried out under the same initial physical conditions. Such 
a comparison with results obtained in the solution of the system of Boltzmann equations by 
the finite-difference method [14] and the Monte Carlo method [6] shows the good accuracy and 
efficiency of the nonsteady statistical model which we used. For example, in [14] the calcu- 
lation time is greater by about an order of magnitude, while in [6] the number of particles 
to assure the required accuracy is two to three orders of magnitude larger. 

5. Relaxation of Excited States 

The problem of the relaxation of excited states is analyzed within the framework of a 
quasiclassical approximation, when the collisions of particles having translational degrees 
of freedom are described classically, while the spectrum of values of the internal particle 
energy is discrete. It is assumed that the exchange of energy between degrees of freedom 
of the gas in the process of collisions is possible with the exception of resonance inelastic 
exchange. 

Let us consider a mixture of two gases, one of which consists of structureless par- 
ticles (such as electrons) while the second consists of particles possessing two internal 
energy levels: ground and excited. In the statistical model we will have three components, 
where one of them (the first for determinacy) is structureless while the second and third 
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components consist of particles with t h e  same mass but different internal energies (E n and 
Em, respectively, with AE~ = E m -- E n > 0). 

The main process determining the behavior of the system of particles under considera- 
tion is the paired collision, the time of which is negligibly small compared with the time 
between collisions. The lifetime of the excited state is assumed to be infinitely long, 
which eliminates the possibility of a collislonless transition of particles of the third 
component to the ground state. The possibility of the ionization and recombination of 
particles of the mixture is not considered, and neither is emission, which can arise in the re- 
laxation of the excited state, modeled here. Only three types of collisions are possible: 
elastic, inelastic, and superelastic (collisions of the second type). 

As a result of collisions of the first type AE~ = 0 and only the velocities v I and v n 
of a structureless particle and a particle in the ground state can change (the internal en- 
ergy E n is constant). 

. Collisions of the second type take place with fulfillment of the condition E = mln. 
(gLn)a/2 ~E*, where g~n = Iv I _ vnl is the relative velocity of the colliding particles; 
m~n is the reduced mass of the particles; E* is the threshold value of the energy determin- 
ing the given inelastic process. The formation of a particle of the third component with an 
internal energy E m and the disappearance of particles in the ground state occur in this case. 
In accordance with the fact that a model of two internal energy levels is considered here, 
the fraction of kinetic energy transferred in a collision from translational to internal 
degrees of freedom is limited by the energy difference of these levels -- of the ground and 
excited states. In order for the energy transfer between degrees of freedom to be efficient, 
it is necessary to satisfy the condition of nonadiabaticity of the transfer process [15], 
which is satisfied in the mixture model under consideration [8]. 

In the process of collisions of the third type under consideration we have AE~ < 0, 
and because of the fact that the sign of the quantity A~ is opposite to the sign of the 
same quantity in the second type of collisions, superelastic collisions can be called oppo- 
site to inelastic collisions. 

Elastic collisions are characterized by a constant scattering cross section 

t i ,  k---- l ,  n ,  m,  
doi~ = ~-ff (rib (g~h) d ~ ,  

where (Oik) o NlO-*5-10 -*~ cm a coincides with the elastic collisional cross sections of the 
main atmospheric components. 

In the case of inelastic collisions of structureless particles with atoms in the ground 
state the cross section of the process is approximated here by the expression 

" ~ [ O, 

]doZ~ 1 z,,, (gZn) d~, In ~ " ~  (Yln 
t 

l'P- I n  

g < g i '  

gln 1~ oln 

20 



where glen = {2AE~/mln }*/~~ is the threshold value of the relative velocity of the colliding 
particles, the quantity (~n)O ~ 10-*7-10 -.8 cm 2 is the mean characteristic value of the 
cross section for inelastic excitation of an atom by an electron. 

The superelastic scattering cross section can be represented in the form 

where (O~m)O ~ 10 -17 cm ~ to provide agreement with experimental data, gas = 4 -- 7. 

Thus, the given model can permit the analysis of a number of physicochemical processes 
of the type of the excitation of atoms by electron impact in a gas. It becomes possible to 
investigate the influence of outside action on the gas, expressed either in the establish- 
ment of equilibrium in the gas or in the maintenance of nonequilibrium states. A determina- 
tion of the characteristic times of energy exchange between degrees of freedom of a gas can 
permit an estimate of the limits of applicability of equilibrium models for gases in which 
one cannot be confined to collisional relaxation with respect to the translational degrees 
of freedom. 1~e possibility in a numerical experiment of estimating the efficiency of energy 
transfer from one degree of freedom to another and of calculating the rates of the processes 
taking place in the gas are important. 

In particular, a condition for equilibrium with respect to internal degrees of freedom 
is time cohstancy of the level-population temperature 

n m  - - - -  ~ 

w h i l e  t h e  r a t e  c o n s t a n t s  o f  t h e  i n e l a s t i c  p r o c e s s e s  a r e  d e t e r m i n e d  by t h e  e q u a t i o n s  

= I, (vZ, t)I  t)gznoI " 0)eaevZev , 

where  f l ( v  l ,  t )  and fn (V n, t )  a r e  t h e  v a l u e s  o f  t h e  d i s t r i b u t i o n  f u n c t i o n s  o f  p a r t i c l e s  o f  
t y p e s  a I and a n a t  a g i v e n  t i m e  t .  

The following model problems are considered: an estimate of the relaxation time of an 
initial nonequilibrium populated excited state in the gas under consideration; an estimate 
of the efficiency of energy transfer from translational to internal degrees of freedom of 
the gas as a function of the energy of the structureless particles and the energy difference 
between the ground and excited states; the populating of the excited level of gas particles 
through the supply of translational energy to the mixture, when the distribution function of 
the structureless particles does not change; an investigation of the process of establish- 
ment of equilibrium with respect to the translational degrees of freedom of the gas with an 
initial temperature nonequilibrium of the gas components under the condition of an initial 
equilibrium population of the internal degrees of freedom; an analysis of the evolution of 
the initial velocity distribution functions as ~ result of the realization of inelastic 
processes; an estimate of the rate constants of processes of excitation of internal degrees 
of freedom by inelastic particle collisions and of relaxation of the excited state in super- 
elastic impacts. 

A nonequilibrium initial state corresponds to a situation when there is a nonequilib- 
rium in the system either with respect to translational degrees of freedom (temperature non- 
equilibrium) or with respect to internal degrees of freedom (the Boltzmann distribution of 
particle concentrations in the ground and excited states is disturbed). 

Processes with a change in internal energy were investigated in cases when the distri- 
bution function of the structureless component was assigned in the form of a ~ function or a 
Maxwellian one and was kept constant in time (thermostatic medium) and when the particle 
system under consideration was assumed to be energetically isolated. 

Processes of translational relaxation and of a change in the internal energy are char- 
acterized by a dimensionless parameter AE~ which, in the case of a monoenergetic initial dis- 
tribution of the structureless particles, is the ratio of the energy of excftation of the 
level at the level temperature T~ v either to the kinetic energy of one particle (thermostatic 
medium) or to the average thermal energy per particle. The characteristic values of this 
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parameter at which the numerical experiments were carried out are 0.0625, 0.250, 0.3906, 
0.490, 0.5625, 0.7225, 1.0, and 1.562. They correspond to the following values of the thres- 
hold velocity gi z 0.5, 1.0, 1.25, 1.4, 1.5, 1.7, 2.0, and 2.5. 

The dependence of the time Tle v in which an inversion of the population of the excited 
state (TleV< O) occurs on the quantity AE~ in the case of a thermostatic medium is presented 
in Fig. 4. 

The results of an investigation of the possibility of maintaining an inverted popula- 
tion of the excited state are presented in Fig. 5; time dependences of the population temper- 
ature of the excited state are given for different values of the parameter AE~. An upper limit 

A 3 2 of values of this parameter (( E2)ma x = 0.250) is established such that when AE~ <---(AEs)ma x 
it is possible to maintain an inverted population of the excited state in the particle system 
under consideration. Further, one can isolate a spectrum of values of the translational en- 
ergy of the structureless particles (AE~ = 0.7225-1.5) for which the particle system arrives 
at a state analogous to an equilibrium state, i.e., T2, T3 ~ o lev ~ o - T~ and T=s - T,, with part of 
the translational energy of the structureless particles going into the excitation of inter- 
nal degrees of freedom. 

For states of the particle system when the translational degrees of freedom are de- 
scribed by a Maxwellian distribution with a temperature TE, the rate constant of the inelas Z 
tic process can be calculated analytically: 

Using the model proposed above for the excitation of particles in the ground state by 
structureless particles, we obtain 
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= ~ nJOkm,----~/ exp(--AEaJTz). (5.1) 

Under conditions close to equilibrium, the statistical rate constant of a process with 
a change in internal energy should be close to the quantity (5.1) and the rate constants of 
inelastic and superelastic processes are close in value. 

For the initial conditions m~:m2:m3 = i:I0:i0 and n3:na = exp(--AE~/T7), where TE = 
T~/3~ and values of the parameter AEa 3 in the range of 0.01-I.0 we calculated the quantities 
F i = (K~2)o/Kia)~ and F s = KS,)o/(KS3)~. The ratios z = Fi/F s obtained for three values 
of the parameter AEa 3 are presented in Fig. 6. From an analysis of these results it follows 
that the relaxation time is less for a system of particles containing high-energy structure- 
less particles (AE] = 0.01-0.I), while the rate constants are (K~a)o = (KS3)~ and F i, F s =I. 
If AEa 3 91.0, the establishment of equilibrium with respect to internal degrees of freedom 
is hindered, since the rate constant of superelastic collisions considerably exceeds the 

A " rate constant of inelastic collisions (z <<i when Ea 91.0), i.e., the collisional processes 
under consideration are insufficient to describe the establishment of equilibrium distribu- 
tions. It is possible that in this case we must allow for other mechanisms of relaxation of 
the internal degrees of freedom, such as allowance for radiative transitions. 

Thus, the investigation of the relaxation of a system of particles with respect to 
translational and internal degrees of freedom using the rate constants of processes with a 
change in the internal energy confirms the conclusions about the behavior of the system made 
on the basis of an analysis of the physical properties of the gas mixture modeled by the given 
system of particles. 

The main result of the present work is the extension of the method of nonsteady statis- 
tical modeling to a gas mixture in which physicochemical processes occur. A model is con- 
structed allowing s analysis of processes of energy exchange between degrees of freedom in 
paired particle collisions with allowance for the known discrete spectrum of values of the 
internal particle energy and the sole requirement of finiteness of the total collisional 
cross section. 

A numerical algorithm was constructed, as a result of the realization of which one can 
obtain the macroscopic characteristics of the mixture: the density, the temperature, the 
average macroscopic velocity, the total energy, and the heat capacity of each component of 
the mixture, as well as the collision frequency, the reaction rate constants, and others. 

The results of the calculations in the problem of the investigation of the relaxation 
of a spatially homogeneous gas when only elastic collisions occur in the mixture confirmed 
the main physical assumptions about the relaxation of a mixture with respect to translational 
degrees of freedom, i.e., the establishment of a single temperature of the mixture and the 
establishment of a Maxwellian velocity distribution function for the particles of the mixture 
components. 

A physicochemical process analogous to the process of excitation of atoms by electron 
impact was investigated for a gas mixture with internal degrees of freedom. The range of 
energy supplied to the mixture in which an inverted population of the excited states of the 
particles is achieved was determined in a numerical experiment. The efficiency of energy 
transfer from translational to internal degrees of freedom as a function of the supplied 
energy and the energy difference between the ground and excited states was estimated. The 
conditions were determined under which a Maxwell-Boltzmann distribution of velocities and 
internal energies is established in the gas mixture. The rate constants were calculated for 
processes of excitation of internal degrees of freedom by inelastic particle collisions and 
for processes of removal of excitation by superelastic collisions, both in nearly equilibrium 
states and in strongly nonequilibrium states. 

The authors thank O. M. Belotserkovskii, M. Ya. Marov, and V. E. Yanitskii for atten- 
tion to the work and useful discussions. 
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